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1 Summary 

This attachment sets out Icon Water’s approach to forecasting demand for its water and sewerage 

services for the 2018–2023 regulatory period. Demand forecasts are required for forecasting costs and 

revenues and include: 

¶ water volumes 

- dam releases for cost forecasting, including the water abstraction charge1  

- billed sales for price setting 

¶ sewage volumes for cost forecasting, using treated sewage effluent discharge as a proxy 

measure  

¶ water and sewerage installation numbers and sewerage billable fixtures. 

Box 1-1:  Key points 

The Industry Panel’s water demand forecasts on which current water prices are based, are about 

seven per cent too high on average over the 2013–18 period, resulting in: 

¶ Icon Water not fully recovering the prudent and efficient costs of providing water services to 

the Australian Capital Territory (ACT) community with volumetric water sales revenue expected 

to fall short by about $56 million ($2016–17) 

¶ significant upwards pressure on water prices for the 2018–23 regulatory period as a 

consequence of reverting to more realistic forecasts. 

Icon Water’s proposed model, adapted from the Independent Competition and Regulatory 

Commission’s (ICRC) 2015 approach, is an autoregressive integrated moving average (ARIMA) 

model that uses daily data to forecast dam releases which are then converted to monthly water sales 

by consumption tier. The preferred specification is a seasonal ARIMA (2,0,1)(2,0,1)[7] model 

estimated over the period from July 2006 with the following climate lags and other explanatory 

variables: 

¶ various temperature, rain and evaporation lags 

¶ cumulative seven days temperature, cumulative seven days rain 

¶ cumulative seven days rain × evaporation 

¶ daily dummies (Sunday–Friday), December and summer dummies 

¶ water installation numbers 

¶ a Fourier seasonal term – to capture annual seasonality. 

In alignment with Icon Water’s proposal for an annual sales revenue adjustment (unders and overs 

account), the model has been configured to provide demand forecasts for each year of the 2018–23 

regulatory period. 

Icon Water forecasts: 

¶ water sales of 41.3 gigalitres (GL) in 2018–19, a step down of eight per cent from the 44.8 GL 

forecast by the Industry Panel for 2017–18 

¶ average billed water sales of 42.0 GL per annum over the 2018–23 regulatory period. 

                                                      
1 Dam releases in this attachment refers to ACT and Queanbeyan consumption plus non-revenue water. 
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Table 1-1: Forecast billed water sales by tier, 2018–19 to 2022–23 

Year Total sales 
(ML) 

Tier 1 sales 
(ML) 

Tier 2 sales 
(ML) 

2018–19  41,325   25,323   16,002  

2019–20  41,618   25,613   16,005  

2020–21  41,880   25,881   15,999  

2021–22  42,278   26,199   16,079  

2022–23  42,662   26,506   16,156  

Source: Icon Water. 

Table 1-2: Forecast treated sewage effluent discharge volumes, 2018–19 to 2022–23 

Year Discharge volumes 
(GL) 

2018–19  35.3  

2019–20  35.5  

2020–21  35.7  

2021–22  35.9  

2022–23  36.1  

Source: Icon Water. 

Table 1-3: Forecast installation and billable fixtures, 2018–19 to 2022–23 

Year Water installations Sewerage installations Billable fixtures 

2018–19  178,795   178,344   64,380  

2019–20  182,083   181,609   65,377  

2020–21  185,432   184,933   66,389  

2021–22  188,842   188,318   67,417  

2022–23  192,315   191,765   68,461  

Source: Icon Water. 

The forecast billed water sales and installation and billable fixture numbers are applied in the revenue 

model to calculate the proposed price path for the 2018–23 regulatory period – see Attachment 11: 

Revenue requirement and price path.  

http://ourprices.iconwater.com.au/attachments
http://ourprices.iconwater.com.au/attachments
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2 Water volumes forecasting 

2.1 Background and context 

2.1.1 Recent demand models  

A number of demand forecast models were considered for the purposes of forecasting water demand 

for the 2013–18 regulatory period. 

In July 2012, Icon Water proposed the Breusch-Ward model in its main submission to the ICRC’s 2013 

water price review. As described in Box 2-1 this econometric model forecasts dam releases and water 

sales over a one-year forecast horizon.2 In its response to the ICRC draft report in April 2013, using this 

model, Icon Water proposed a billed water sales forecast of 40.9 GL for 2013–14, the first year of the 

2013–18 regulatory period.3 

Box 2-1: Breusch-Ward model summary 

The Breusch-Ward model uses three sources of water data: aggregated billed water 
sales, daily dam releases and a sample of individual customer water billing data. 
The output of the model includes monthly forecasts of water sales and dam releases 
which can be aggregated into quarterly forecasts or an annual forecast as well as a 
split between Tier 1 and Tier 2 water consumption. The forecasting model 
incorporates an error correction process that adjusts the forecasts based on the 
difference between the recently-observed water sales or dam releases and the 
volume predicted in the model. Thus, if the model over-predicts sales in one year 
then an adjustment to the subsequent forecast is applied. 

Six predictors of water consumption are utilised in the Breusch-Ward model: 

¶ a cumulative evaporation index 

¶ a cumulative rainfall index 

¶ being under water restrictions of permanent water conservation measures 

(PWCM) or greater 

¶ being under water restrictions of Stage 2 or greater 

¶ during water restrictions of PWCM or greater, a seasonal index ‘summer’ 

reflecting reduced seasonal water use under restrictions 

¶ during Stage 3 or greater water restrictions, a multiplicative interaction between 

the summer index and the cumulative rainfall index reflecting reduced 

sensitivity of summer consumption to rainfall during severe restrictions.  

Source: ICRC (2015b). 

In its determination in June 2013, the ICRC decided not to apply any model based on historical demand 

data, citing concerns about a structural break between water demand and the explanatory climate 

variables. The ICRC instead elected to apply a conservative water sales forecast of 38 GL per annum 

for the first two years of the 2013–18 regulatory period, with the aim of ‘ensuring [Icon Water’s] financial 

viability’.4  

                                                      
2 ACTEW, 2012: 69-84. 

3 ACTEW, 2013: 34. 

4 ICRC, 2013: 117. 
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In December 2014, using an adapted form of the Breusch-Ward model in its submission to the ICRC’s 

2015 biennial recalibration process, Icon Water provided a forecast of billed water sales of 40.3 GL per 

annum for 2014–15 through to 2017–18.5 

In January 2015, in its response to the Industry Panel’s draft report, Icon Water, again using an adapted 

form of the Breusch-Ward model, proposed a billed water sales estimate of 40.6 GL for 2014–15 and 

forecasts of 42.6 GL per annum thereafter until the end of the regulatory period (Icon Water 2014). 

In 2015, the ICRC developed a top-down autoregressive integrated moving average (ARIMA) 

econometric model that uses daily data to forecast dam releases which are then converted to monthly 

water sales by consumption tier.6 This model, described in Box 2-2, intended to be used in the biennial 

recalibration process (subsequently suspended by the Industry Panel), produced water sales forecasts 

of 40.0 GL for 2014–15, 39.3 GL for 2015–16 and 39.1 GL for 2016-17.7 

Box 2-2: ICRC ARIMA model summary 

The [ICRC’s] preferred model is a seasonal ARIMA (1,0,2)(1,0,1)[7] model, 
estimated over the period starting 1 July 2006, with the following climate lags and 
dummy variables: 

¶ Temp (0, 1, 3, 12), Temp squared (0, 1, 3, 5, 12), Temp square root (1); 

¶ Rain (0, 1), Rain squared (2, 3), Rain square root (0 - 8), Rain cubed (0 - 2), 

Rain square root (6); 

¶ daily dummies (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday); 

¶ water restrictions dummy (Stage 3); and 

¶ a Fourier series term. 

Source: ICRC (2015c). 

In its May 2015 final decision, the Industry Panel decided against Icon Water’s proposed demand 

forecasts and instead adopted an alternative bottom-up model recommended by Cardno, the Panel’s 

engineering consultant. The Cardno model described in Box 2-3 used a sector-based approach to 

separately forecast annual water sales for four specified customer segments based on a set of weather 

and water restrictions variables for the 2001–2014 period.8 Using this model, the Industry Panel 

determined water sales forecasts starting from 43.15 GL in 2014–15, and rising incrementally by about 

0.5 GL per annum to 44.76 GL by 2017–18. These volumes were then used to set prices for the 

remaining four years of the 2013–18 regulatory period. 

                                                      
5 Icon Water, 2014: 13. 

6 ICRC, 2015b: 1-31 

7 ICRC, 2015c: 27 

8 Cardno, 2014: 1-113; 2015: 1-27. 
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Box 2-3: Cardno model summary 

The forecasting methodology used by Cardno for the purposes of the Industry 
Panel’s final decision comprised the following eight main steps: 

1. Calculate consumption per property, by four main customer types 

(freestanding houses, units, government/commercial, and ‘all other’ 

properties), based on actual consumption data for the period 2001–02 to 

2013–14. 

2. Apply the weather and restrictions data Icon Water used in applying the 

Breusch-Ward model to attempt to explain changes in per property 

consumption and total volumes by customer type. 

3. Analyse detailed meter-reading data (4.5 million records from 2006 to 2014) 

to look for changes and differences in consumption patterns for existing and 

new freestanding residential housing and units. This analysis revealed that 

newer houses and units consume less water than older housing stock. 

4. Adjust the predicted per property consumption to account for changes in the 

housing stock, particularly the likely impacts of new, more ‘water efficient’ 

housing. 

5. Estimate the growth in the customer base, by analysing historic trends in 

customer growth and taking account of Australian Bureau of Statistics (ABS) 

population forecasts. For the purpose of forecasting changes in customer 

numbers, Cardno adopted historic growth rates for different types of 

dwellings, with the number of customers in residential houses and 

residential units assumed to increase at their five-year historic average 

annual growth rate. 

6. Assess the accuracy of population forecasts, by comparing population 

projections made by the ABS and the ACT Government to actual observed 

population at various time horizons. 

7. Analyse weather variance distribution (sensitivity analysis), by examining the 

variance in the annual averages of the weather data collated for the 

Breusch-Ward model. 

8. Analyse the data to determine the split between Tier 1 and Tier 2 

consumption, using a method based on the actual split of consumption as 

observed by Icon Water. 

Source: Industry Panel (2015). 

2.1.2 Ex-post performance of the Cardno model  

Clause 2a of the terms of reference for the 2018 price review requires the ICRC to: 

consider continuing to use the current regulatory model, and, where identified, implement 

improvements to particular aspects of the methodology.9 

In its issues paper, the ICRC indicated that it would consider changes to the Industry Panel’s 

methodology where the changes are likely to result in substantially better outcomes for the ACT 

community.10 

As discussed above, as part of its regulatory model, the Industry Panel used the Cardno demand model 

to generate the water sales forecasts on which current water prices are based. As such, consideration 

                                                      
9 ACT Government, 2016: 1. 

10 ICRC, 2017: 2. 
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of forecasting approaches for the 2018–23 regulatory period should include an assessment of whether 

the Cardno model should be retained. This is accomplished through a two-part assessment process. 

First, below, the performance of the Cardno forecasts is reviewed against observed sales this regulatory 

period in comparison to alternative forecasts made at the time. Second, in section 2.2.2, the Cardno 

model is evaluated against a set of principles applied to assess the robustness of Icon Water’s proposed 

forecasting approach for the 2018–23 regulatory period. 

The forecast volumes produced by the various models discussed above are shown in Table 2-1 in 

comparison to observed sales for 2014–15 and 2015–16 and estimated sales volumes for the current 

regulatory year, 2016–17. It shows that the Icon Water and ICRC forecasts proved to be much closer 

to outturn sales than the Industry Panel forecasts. 

Table 2-1: Water sales forecast performance to date, 2013–18 regulatory period 

GL 
Icon 

Water 
(2013 
price 

review - 
Apr 2013) 

ICRC 
(final 

decision - 
Jun 2013) 

Icon 
Water 
(2015 

biennial 
review - 

Dec 2014)  

Icon 
Water 
(2015 

Industry 
Panel 

review - 
Jan 2015)  

ICRC 
(ARIMA 
model - 

Apr 2015) 

Industry 
Panel 
(final 

decision - 
May 2015) 

Observed
/ 

estimated 
sales    

2013–14  40.9   38.0       42.0 

2014–15   38.0   40.3   40.6   40.0   43.2   39.2  

2015–16    40.3   42.6   39.3   43.7   41.8  

2016–17    40.3   42.6   39.1   44.2   42.0  

2017–18    40.3   42.6    44.8   

Average 2014–15 to  
2017–18 

40.3 42.1 39.5 44.0 41.0 

Source: ACTEW (2013); ICRC (2013); Icon Water (2014); ICRC (2015c); Industry Panel (2015); Icon Water. 

Note: 2016–17 water sales estimate based on nine months of observed data. 

In response to the Industry Panel’s December 2014 draft report, Icon Water noted that the Cardno 

model forecasts were ‘above the expected level of demand, based on Icon Water’s statistical analysis’.11 

In its response to the Industry Panel process, the ICRC also raised a number of concerns with the 

Cardno model, noting in particular that: 

A more serious concern than that there is no sound basis for the growth in the water sales 

forecast by the Cardno model is that the forecast level of water sales from which the growth 

commences may be well wide of the mark.12 

As detailed in Table 2-1 and illustrated in Figure 2-1, the Industry Panel’s average forecast of 44.0 GL 

over the four years to 2017–18 is about 3 GL or seven per cent higher than the average observed and 

estimated sales to date. In comparison, the forecasts put forward by Icon Water to the Industry Panel 

are about 1 GL or three per cent above the observed average. 

                                                      
11 Icon Water, 2015: 7. 

12 ICRC, 2015a: 31. 
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Figure 2-1: Icon Water billed sales forecast compared to Industry Panel decision 

Source: Icon Water. 

On this simple measure, the evidence shows that the Cardno model has not performed well. It has not 

only significantly overstated the level of demand, but also performed less well than the alternative Icon 

Water and ICRC forecasts. This result is not unexpected, given the concerns raised by Icon Water and 

the ICRC about the structure of the Cardno model at the time it was presented by the Industry Panel 

(see section 2.2.2).    

2.1.3 Impact of the current water demand forecasts 

The Industry Panel water forecasts have two main impacts.  

The first is that water prices in the current regulatory period have not been set high enough to allow 

Icon Water to fully recover the efficient cost of providing water services to the ACT community. Icon 

Water estimates that its water sales revenue from Tier 1 and Tier 2 prices will fall short of forecast by 

about $56 million ($2016–17) this regulatory period.13 The likelihood of such a significant revenue 

shortfall was flagged by Icon Water in its response to the Industry Panel’s draft report: 

There is a considerable risk that water sales will be below the forecast adopted by the 

Panel and that, as a result, revenue will fall short of the level the Panel has identified is 

required to recover efficient costs.14 

Given the evidence above, retaining the Cardno model and maintaining, or more likely increasing, the 

current level of water sales forecasts into the next regulatory period, is not financially sustainable and 

would conflict with the National Water Initiative commitment to full cost recovery and the cost recovery 

considerations in section 20(2) of the Independent Competition and Regulatory Commission Act 1997 

(ICRC Act). 

                                                      
13  The Industry Panel’s Substituted Price Direction has a demand volatility adjustment mechanism that allows 
Icon Water to recover the difference between actual water sales revenue and forecast revenue in excess of 
six per cent. This is discussed in Attachment 2: Form of regulation. 

14 Icon Water, 2015: 7. 
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This leads directly to the second impact, which is that the adoption of a more robust forecasting model, 

such as the one proposed in this attachment, with more realistic water volume forecasts, all other things 

remaining equal, puts upwards pressure on water prices. 

In its issues paper for the 2018 price review, the ICRC identified water sales forecasting as one of the 

carryover issues from the 2013–18 regulatory period: 

The expected substantial forecasting error for water sales volumes raises the issues of both 

the methodology for forecasting water sales and other mechanisms to ensure efficient 

recovery of allowable expenditure.15 

2.2 Modelling approach and principles for the 2018–23 regulatory period  

2.2.1 Supply and demand side risk 

The volume of water sales over the course of a regulatory period, and especially a five-year period, 

cannot be determined with certainty in advance. Volume uncertainty can be split into supply and 

demand side components. 

In the 2008–13 regulatory period, due to low storage levels (which resulted in the imposition of 

temporary water restrictions for long periods), Icon Water was not in a position to supply the unrestricted 

demand from its customers. As a result of recent water security investments, and in particular the 

enlarged Cotter Dam, ACT water combined water storage capacity has increased by more than a third 

from 206 to 278 GL. Following above-average rainfall during the winter and spring of 2016, Canberra’s 

expanded water storages are at about 85 per cent. 

Figure 2-2: Storage volumes over the last 20 years 

Source: Icon Water. 

Icon Water supply and demand balance modelling shows that, if the Millennium Drought happened 

again now, water storage levels would not fall below 50 per cent and, based on current trigger levels, 

temporary water restrictions would not be imposed (see Figure 2-3). This indicates that supply side risk 

                                                      
15 ICRC, 2017: 17. 
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is very low over the next regulatory period, with Icon Water in a good position to supply the water 

volumes demanded by its customers. 

Figure 2-3: Water security – Scenario modelling results for water storage 

 

Source: Icon Water (2016). 

Demand side risk arises due to a number of factors, the most important of which is short-term climatic 

conditions which explain the year-to-year variations in demand. Other influences include the medium 

to longer-term impact of changing customer consumption behaviour, growth in customer numbers and 

climate change.16 While the latter two risks can be mitigated to some extent in the model specification 

and conditioning of the forecast explanatory variables, a regulatory forecasting model cannot eliminate 

demand side risk, nor is it designed to do so. 

The demand model is not expected to exactly predict dam releases and water sales for each year of 

the next regulatory period. Actual water sales volumes that eventuate in the forecast period will depend 

on the actual weather patterns experienced. If the weather is hotter and dryer than average, water sales 

are likely to be higher than forecast and the converse under cool and wet conditions. Rather, the model 

aims to produce mean (expected value) forecasts, conditional on forecast levels of explanatory 

variables, which on average will result in Icon Water recovering its revenue allowance over the whole 

period.  

2.2.2 Principles  

In Icon Water’s view, a robust regulatory water forecasting approach should satisfy a number of key 
principles. The approach should: 

¶ be simple, transparent and replicable – the mechanics of the model and the underlying data 

should be made available to both the regulator and the regulated utility (and potentially the public) 

to allow for scrutiny 

¶ have a sound statistical basis – the model should be developed using an objective model 

selection process, and in the ACT context, take proper account of the historical relationship 

                                                      
16 Increased climate variability due to climate change also has the potential to exacerbate short-term climatic risk. 
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between the dependent variable (dam releases) and explanatory variables (such as climate 

variables) 

¶ use dam releases as the principal basis for forecasting – this enables the model to capture the 

direct and immediate relationship between water consumption and daily climate, provides a much 

longer data series than the monthly billed consumption data, and ensures consistency between 

the forecasts used for determining operating expenditure and those used for revenue recovery 

purposes 

¶ be fit for purpose with respect to the forecasting period – the model should be configured to 

produce forecasts for the period required by the form of regulation, which could be short-term 

with annual updates or longer-term for an entire regulatory period   

¶ perform well when tested for forecast accuracy – using dynamic out-of-sample tests in 

comparison to reasonable alternative models. 

These principles provide a framework for assessing three of the demand models discussed above that 

could potentially be applied moving forward: the Breusch-Ward model, the ICRC ARIMA approach and 

the Cardno model. 

Simple, transparent and replicable 

In December 2014 Icon Water requested access to Cardno’s water volumes forecasting modelling. The 

Industry Panel considered this request but decided against making the model available, instead 

providing Cardno’s report that ‘sets out its approach and the details of the assumptions made and the 

data used’.17 Icon Water has not therefore been able to fully scrutinise or replicate the Cardno model.  

In contrast, the detailed mechanics and data underpinning both the Breusch-Ward and ICRC ARIMA 

models are available to the ICRC and Icon Water. The ICRC approach is less complex to run, replicate 

and update than the Breusch-Ward model. 

Sound statistical basis 

A number of criticisms have been levelled at the statistical basis of the Cardno model by Icon Water in 

its response to the Industry Panel’s draft report and the ICRC in its report on the outcomes of the 

Industry Panel process. 

Icon Water noted that Cardno provided no evidence of an objective model selection process in 

developing its model, stating ‘Cardno’s model appears to have been specified based on its a priori 

preferences without statistical analysis to support choosing that specification over alternative 

specifications’.18 Icon Water also raised concerns that Cardno’s ‘water aware’ variable is based on an 

unreasonable subjective assumption and is also inconsistent with its definition.19 

The ICRC noted that the Cardno model is estimated on the basis of only 13 annual observations, but 

more critically the forecasting equations are estimated across a structural break in the relationship 

between water consumption and climate variables: 

Although the statistical techniques employed in forecasting are more sophisticated than 

taking averages, to the extent that they ignore the effects of the structural break identified 

by the Commission, they will suffer from the same tendency to overestimate the likely levels 

of consumption for years following the structural break.20 

                                                      
17 Industry Panel, 2014: 1. 

18 Icon Water, 2015: 16. 

19 Icon Water, 2015: 16. 

20 ICRC, 2015a: 32. 
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In contrast, both the Breusch-Ward and ICRC ARIMA approaches were subject to robust statistical 

model selection criteria, principally the Bayesian Information Criterion in the case of the former, and the 

Akaike Information Criterion for the latter. Both approaches also took account of the structural break in 

the data series by estimating the models over a period after the break or adjusting for the effects of the 

break. 

Dam releases basis 

The Cardno model is a billed consumption forecasting model that relies on annual rather than monthly 

observed data. The ICRC ARIMA approach utilises daily dam releases as the primary basis for 

forecasting water demand, while the Breusch-Ward model uses dam releases and sales data for 

different elements of the model estimation process. 

Forecast period 

The Cardno model is designed to produce multi-year forecasts, as required by the Industry Panel. The 

Breusch-Ward and ICRC ARIMA models are designed primarily for short-term forecasting, but can be 

configured to produce forecasts over a longer horizon.  

Forecast accuracy  

Forward-looking forecast accuracy (as opposed to an ex-post assessment), in comparison to alternative 

models, should be considered as part of the model development process. While all three models under 

consideration here were not subject to a formal out-of-sample testing process at the development stage, 

all three are amenable to such testing. Table 2-2 summarises the performance of each model against 

the proposed principles and shows in particular that the Cardno model performs poorly against four of 

the five principles.  

Table 2-2: Model comparison against principles 

Principle Cardno model 
Breusch-Ward 

model 
ICRC ARIMA 

approach 

Simple, transparent and replicable U  V V 

Sound statistical basis U V V 

Dam releases basis U V V 

Forecast period V V V 

Forecast accuracy testing U U U 

Conclusion 

In light of the ex-post forecast performance assessment in section 2.1.2 and comparison of the various 

models against the set of principles above, Icon Water does not support continuing to use the Cardno 

model for the 2018–23 regulatory period. 

Icon Water’s preference is to adopt the ICRC’s econometric time series ARIMA approach, with some 

modifications, to forecast dam releases and water sales volumes for the 2018–23 regulatory period, on 

the basis that it is best able to meet the principles listed above.  

The ARIMA approach is preferred over the Breusch-Ward model for several reasons: 

¶ Canberra Airport net evaporation, one of the key explanatory variables in the original 

Breusch-Ward specification, is no longer available 
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¶ ARIMA modelling is a commonly accepted and widely used approach to modelling high frequency 

time series data that is characterised by autocorrelation of the error terms (see section 2.2.3) 

¶ the ARIMA approach is less complex to administer and update than the Breusch-Ward model. 

Icon Water’s preferred ARIMA model is developed and described in the remainder of this attachment. 

The development process deliberately subjects the preferred model to the necessary tests and scrutiny 

to ensure that it complies with the set of principles described above. Performance against these 

principles is reviewed in section 2.8. 

2.2.3 The ARIMA approach  

High frequency time series data such as daily dam releases and climate data are often characterised 

by autocorrelation (serial correlation) of the disturbances across periods, which violates the ordinary 

least squares (OLS) assumption that the error term is independently distributed across observations. It 

results in the estimates being inefficient and also adversely affects any inferences derived from the 

estimates. Evidence of autocorrelation can be found by examining the autocorrelation function (ACF) 

which measures the linear relationship between lagged values of a time series and shows the degree 

of persistence over respective lags of a variable. The ACF for the dam releases data series in Figure 

2-4 shows a persistent pattern with clear evidence of autocorrelation. 

Figure 2-4: ACF and PACF dam releases 

Source: Icon Water analysis, R Studio output. 

An examination of the partial autocorrelation function (PACF), also shown in Figure 2-4, which 

measures the relationship between a variable and a lag of itself after removing the effect of other time 

lags, shows a strong partial coefficient at lags one through 10 and at intervals beyond.21 

                                                      
21 Following Greene (2012) and Hyndman and Khandakar (2012), the ACF(k), which gives the gross correlation 
between yt and yt-k for different values of k, can mask a completely different underlying relationship. For example, 
a correlation between yt and yt-2, could arise simply because both variables are correlated with yt-1 rather than 
any new information contained in yt-2 that could be used forecasting yt. To overcome this problem, the PACF can 
be used which measures the relationship between yt and yt-2 net of the intervening effect of yt-1 (Greene, 2012: 

757; Hyndman and Khandakar, 2012: 8.5 Non-seasonal ARIMA models). 
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The ARIMA procedure is a time series technique designed to model the lagged relationships in 

serially-correlated data. The ARIMA procedure models a time series event as a linear function of its 

past values, past errors and current and past values and errors of other time series (in a multivariate 

ARIMA model).  

More specifically, an ARIMA model integrates an autoregressive model (which uses past values of the 

forecast variable) with a moving average model (which uses past forecast errors).22 Following Hyndman 

and Athanasopoulos (2012), this can be written as: 

ώ ὧ ‰ώ Ễ ‰ώ —Ὡ Ễ —Ὡ Ὡ 

where yt is the differenced series. This is called an ARIMA (p,d,q) model. ARIMA models can model 

non-seasonal and seasonal data. The seasonal model can be written as: 

!2)-! ὴȟὨȟή ὖȟὈȟὗ ά 

where: 

¶ p and P is the order of the autoregressive part 

¶ d and D is number of differences needed for stationarity23 

¶ q and Q is the order of the moving average part – the number of lagged forecast errors 

¶ m is the number of periods per season. 

The appropriate values for the parameter above are identified in the modelling process. 

2.2.4 Model selection process 

In developing its preferred ARIMA model, Icon Water has followed a process (see Box 5), based on the 

Box-Jenkins approach (Box and Jenkins 1970), and similar to that described in the two ICRC technical 

papers on water demand forecasting.24 

                                                      
22 For a full treatment of the ARIMA modelling theory and practical application see Greene (2012) and Hyndman 
and Athanasopoulos (2012). 

23 See section 2.2.6 for more detail on stationarity. 

24 The Box-Jenkins approach to modelling ARIMA processes was described in a seminal book by statisticians 
George Box and Gwilym Jenkins in 1970. 
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Box 2-4: Model selection process steps 

1. Data analysis: 

- select the desired dependent variable and determine the relevant 
explanatory variables to be tested in the model identification stage  

- plot the data to look for patterns, such as seasonality or trends in the 
data over time 

- assess consistency in the relationship between the dependent and 
explanatory variables over time to inform the choice of model estimation 
period. 

2. Model identification: 

- check for stationarity and evidence of cointegration between variables 
(when dealing with multivariate models), then differencing the data if 
necessary 

- identify the potential model structure by comparing the empirical 
autocorrelation patterns with theoretical ones using the ACF and PACF 

- run multiple alternative model specifications and selecting the preferred 
specification with reference to the Akaike Information Criterion and the 
significance of the equation coefficients. 

3. Parameter estimation – this step involves estimating the values of the 
parameters of the preferred model specification over the selected estimation 
period. 

4. Diagnostic checking – the fourth stage involves examining the assumptions 
of the model by testing the model residuals for stationarity through visual 
inspection and statistical methods. 

5. Accuracy assessment – assess forecast accuracy using a range of measures 
such as the root mean square error (RMSE).25 

6. Assessment against principles – performance against the set of forecast 
approach principles set out in section 2.2.2. 

7. Forecasting – equipped with the preferred model that has been identified, 
estimated and checked, the final step is to use it to compute forecasts. 

Source: Adapted from Hyndman (2001). 

Icon Water used the following open source software in the development and operation of the ARIMA 
model: 

¶ the R statistical package26 and the RStudio interface27 

¶ the Gretl econometric package.28 

2.3 Step 1 – Time series data analysis 

In the ACT there is a strong and immediate relationship between water demand and climate. From a 

modelling perspective, the dependent variable of interest is daily dam releases, which has in turn a 

reliable relationship with monthly billed water sales. The key explanatory variables are daily rainfall, 

                                                      
25 The RMSE is a standard measure of the difference between the values forecast by a model and the observed 
values. 

26 R Core Team, 2016. R version 3.3.1 (Bug in Your Hair) released on 21 June 2016. 

27 RStudio Team, 2015. 

28 Cottrell and Lucchetti, 2007: 1-374. 
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maximum temperature and evaporation. Population is also assessed as a potential explanatory 

variable.  

2.3.1 Water demand 

Icon Water releases water on a daily basis from its dams to meet demand from the ACT and 

Queanbeyan. Two inferences can be drawn from Figure 2-5 which shows daily dam releases since 

July 1986. The first is that there is a clear seasonal pattern in the data, with peaks in the hotter summer 

months and troughs in the cooler months. The second is that there appears to be a declining trend in 

daily releases over the period shown, due to falls in the summer peaks, with the troughs remaining 

relatively stable. 

Figure 2-5: Icon Water daily dam releases, 1986 to 2017 

Source: Icon Water. 

The declining trend in in dam releases has occurred at a time of significant population growth, 

particularly over the last 15 or so years. Over the period 1999 to 2015, the ACT and Queanbeyan 

population increased by about 26 per cent from an estimated 343,000 to about 432,000 (ABS 2007, 

2016a, 2016b). This has resulted in a significant fall in per capita dam releases since the early 2000’s, 

as shown in Figure 2-6. 
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Figure 2-6: ACT and Queanbeyan dam releases per person, 2000 to 2016 

Source: Icon Water. 

ACT billed water sales account for about 85 per cent of total dam releases, with the balance accounted 

for by bulk water sales to Queanbeyan City Council and network losses.29 Annual ACT water sales are 

shown in Figure 2-7, along with observed summer temperature and rainfall and water restriction levels. 

Figure 2-7: Icon Water annual dam releases and ACT water sales, 1999 to 2016 

Source: Bureau of Meteorology; Icon Water. 

Water sales over the nine-year period to 30 June 2008 averaged 47.7 GL per annum.  

Over the five years of the previous regulatory period, from 1 July 2008 to 30 June 2013, water sales 

averaged 37.2 GL per annum. This period was characterised by substantial amounts of time under 

temporary water restrictions of increasing severity, which were targeted at reducing outdoor water use. 

In addition, there were two years toward the end of the 2008–13 regulatory period with unusually cool 

and wet summers which further reduced demand. 

                                                      
29 Network losses in this context includes all non-revenue water arising from losses, meter under-reads and 
firefighting use.    
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Over the first three years of the current regulatory period, from 1 July 2013 to 30 June 2016, water sales 

have averaged 41.0 GL per annum. This period has been characterised by an absence of temporary 

water restrictions and a return to more normal summer weather patterns for two out of the three years. 

There is little evidence of a bounceback in water sales following the cessation of temporary water 

restrictions in November 2010, and certainly no return to the high water consumption levels of the early 

to mid-2000’s. 

2.3.2 Climate 

The Bureau of Meteorology daily maximum temperature and rainfall data for Canberra Airport is 

available from 1939. The Bureau of Meteorology also provides daily evaporation data for Burrinjuck 

Dam from 1965.30 Given the strong seasonal pattern of water demand in the ACT, it makes sense for 

the climate data analysis to focus on the summer period from December through February. Total 

summer rainfall in millimetres (mm) and average maximum daily summer temperatures in degrees 

Celsius (oC) from 1939 to 2016 are shown in Figure 2-8 and Figure 2-9. Average daily summer 

evaporation (in mm) is shown in Figure 2-10. 

Figure 2-8: ACT (Canberra Airport) total summer rainfall, 1940 to 2017 

Source: Bureau of Meteorology. 

                                                      
30 Burrinjuck Dam evaporation data is used as a proxy since the Bureau of Meteorology ceased reporting 
evaporation data for Canberra Airport. 
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Figure 2-9: ACT (Canberra Airport) average daily summer maximum temperature, 1940 to 2017 

Source: Bureau of Meteorology. 

Figure 2-10: Burrinjuck Dam average summer daily evaporation, 1966 to 2017 

Source: Bureau of Meteorology; NSW Government. 

In addition to showing the variation in climate from year to year, the key feature shown in the climate 

data figures is the indication of an inclining trend in the maximum temperature. This is explored in more 

detail in section 2.9.1.  

2.3.3 Time series data consistency – structural break hypothesis 

When undertaking time series analysis in developing its ARIMA model, the ICRC identified a structural 

break in the relationship in the water demand and climate time series data: 

In short, the visual inspection and statistical tests suggest that there is a structural break in 

the water demand and climate time series data in about July 2006. Since then, it appears 
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that there may be a new and stable relationship between water sales and climate 

variables.31 

In order to test the ICRC's hypothesis of a July 2006 structural breakpoint, and inform the choice of 

model estimation period for Icon Water's preferred ARIMA model, the tests undertaken by the ICRC 

have been replicated, using the ICRC's OLS regression mid-term demand forecasting model.32 

Visual inspection 

Running the ICRC mid-term model before and after July 2006, and plotting the fitted results for the two 

regressions, as shown in Figure 2-11, appears to visually confirm the ICRC's hypothesis. 

Figure 2-11: July 2006 breakpoint figure 

Source: Icon Water analysis. 

Statistical tests 

The following statistical tests were applied to further assess evidence of a structural break: 

¶ Chow test – this follows an OLS regression and tests whether the coefficients in regressions on 

different data periods are equivalent, with a null hypothesis of no structural break at a given break 

point 

¶ cumulative sum control chart (CUSUM) test – this tests for parameter stability over the chosen 

data set.  

A Chow test was run over the period December 1999 to December 2016 with the break point set at July 

2006 using a dummy variable. The test for structural difference with respect to the dummy returned an 

F-value of 27.48 with a p-value of 0.0000. This suggests that the null hypothesis of homogeneity across 

the two periods can be rejected at the 99 per cent confidence level. A CUSUM test over the entire 

period returns a test statistic of -3.12 with a p-value of 0.0021, indicating that the parameters are not 

stable over this period. 

In contrast, running a CUSUM test over the period July 2006 to December 2016 returns a test statistic 

of -0.952 with a p-value of 0.3432, suggesting that the null hypothesis of parameter stability over this 

period cannot be rejected at any of the generally acceptable confidence levels. This result is shown 

visually in Figure 2-12. 

                                                      
31 ICRC, 2015b: 19. 

32 ICRC, 2013. This OLS model forecasts monthly water consumption using a range of climate variables.    
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Figure 2-12: CUSUM plot, July 2006 to December 2016 

Source: Icon Water analysis, Gretl output. 

Conclusion 

The test results confirm the hypothesis postulated by the ICRC of a structural break in the water demand 

and climate time series data in about July 2006 and that, since then, it appears there may be a new 

and stable relationship between the two data series. 

2.3.4 Population 

Background 

The relationship between population and water demand has been considered in the development of a 

number of the ACT water forecasting models listed in section 2.1.1. 

The Breusch-Ward model excluded population as an explanatory variable on the basis that it is not 

statistically significant and the coefficient is negative, rather than positive as one would expect.33 

Breusch and Ward34 suggested that water-saving efficiencies may be increasing at a rate to roughly 

offset population growth. In developing its model in 2015, the ICRC noted: 

The Commission chose not to include a population variable because there is no trend in the 

Releases data over the estimation period. As the Commission noted in the January 2015 

paper and as is illustrated in Figure 2.7, over the period 1998 to 2014, there has been a 

significant, downward trend in Releases.35 

In the 2015 Industry Panel review, the Panel’s engineering consultant Cardno questioned the absence 

of a population variable in the demand model presented by Icon Water: 

                                                      
33 Breusch and Ward, 2012: 18. 

34 Breusch and Ward, 2012: 5. 

35 ICRC, 2015c: 12. 
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Our first comment is that it is striking that the explanatory variables used to predict demand 

do not include any reference to population. This is striking not just because population is an 

obvious driver for demand, and that detailed historic population data is available, but also 

because data about the expected population is available and reasonably robust. To the 

extent that demand can be shown to be related to population, it has the merit of being a 

useful predictive variable precisely because we can predict population with some 

accuracy.36 

Cardno proposed an alternative model, subsequently adopted by the Industry Panel, which specifically 

accounted for population growth at the customer segment level. 

Both the Breusch-Ward and ICRC 2015 model are short- rather than long-term forecasting models. In 

particular, they are not intended to forecast demand over a full five-year regulatory period. The 

Breusch-Ward model is designed to be updated on an annual basis, while the ICRC model has a 

2.5-year forecast horizon. 

In alignment with Icon Water’s form of price control proposal discussed in Attachment 2: Form of 

regulation, Icon Water has configured the model proposed in this attachment to provide water demand 

forecasts for each year of the 2018–23 regulatory period. Given this long-term forecasting requirement, 

the question of whether to include population in the forecasting model has been revisited. 

Analysis 

A regression of dam releases against time from the start of the data series in 1986 to 2017 shows a 

significant and negative relationship (see Table 2-3). 

Table 2-3: Releases against time regression results, 1986 to 2017 

 Coefficient Standard error t-value p-value Significance 

intercept 268.5443 3.4683 77.4290 0.0000 *** 

time -0.0061 0.0002 -33.4679 0.0000 *** 

Source: Icon Water analysis. 

In contrast, repeating this exercise over the model estimation period from July 2006, shown in Table 

2-4, indicates a significant and positive relationship between releases and time. 

Table 2-4: Releases against time regression results, 2006 to 2017 

 Coefficient Standard error t-value p-value Significance 

intercept 121.6159 1.0017 121.4044 0.0000 *** 

time 0.0026 0.0004 5.7084 0.0000 *** 

Source: Icon Water analysis. 

On the basis of this result Icon Water has considered population (or number of water installations as a 

proxy) as a potential explanatory variable at the model identification stage. Figure 2-13 shows the ACT 

                                                      
36 Cardno, 2014: 57. 

http://ourprices.iconwater.com.au/attachments
http://ourprices.iconwater.com.au/attachments
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and Queanbeyan population that is served by Icon Water’s dams and Icon Water installations over the 

period 1999 to 2016.37 

Figure 2-13: ACT and Queanbeyan population and water installations, 1999 to 2016 

Source: Icon Water; ACT Government (2014); ABS (2007, 2015, 2016a, 2016b). 

2.4 Step 2 – Model identification 

2.4.1 Stationarity and cointegration 

The methods used to estimate ARIMA models rely on the residuals or error term being serially 
uncorrelated (or white noise). A stationary process exhibits a constant mean and variance over time: 

A stationary time series is one whose properties do not depend on the time at which the 

series is observed.38 

What this means is that a seasonal time series such as ACT dam releases is not stationary by definition. 

Differencing, that is calculating the difference between consecutive observations, is a common 

technique to stabilise a non-stationary series. 

Accumulated wisdom and the results of the previous sections suggest that the appropriate 

way to manipulate such series is to use differencing and other transformations (such as 

seasonal adjustment) to reduce them to stationarity and then to analyze the resulting series 

as VARs or with the methods of Box and Jenkins.39 

However, as the ICRC found in developing its 2015 model, in certain circumstances the error process 

of a multivariate ARIMA model may be stationary despite evidence of non-stationarity in the individual 

variables. This occurs in cases where pairs of variables are cointegrated (see Box 2.5). In this particular 

                                                      
37 Installations are the basis for Icon Water’s billing system and reflect a parcel of land rather than a specific 
customer. That is, a customer (person or organisation) may have one or more installations.  

38 Hyndman and Athanasopoulos, 2012: section 8.1 Stationarity and differencing. 

39 Greene, 2012: 999. 
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circumstance, it is inappropriate to difference the variables as the ‘estimated coefficients [of the 

equation] are correct’.40 

Box 2-5: Stationarity and cointegration 

In the fully specified regression model 

Ù ɼØ ʀ 

there is a presumption that the disturbances εt are a stationary, white noise series.41 

But this presumption is unlikely to be true if yt and xt are integrated series. Generally, 

if two series are integrated to different orders, then linear combinations of them will be 

integrated to the higher of the two orders. Thus, if yt and xt are I (1)—that is, if both 

are trending variables—then we would normally expect yt − βxt to be I (1) regardless 

of the value of β, not I (0) (i.e., not stationary). If yt and xt are each drifting upward with 

their own trend, then unless there is some relationship between those trends, the 

difference between them should also be growing, with yet another trend. There must 

be some kind of inconsistency in the model. On the other hand, if the two series are 

both I (1), then there may be a β such that 

ʀ Ù ɼØ 

is I (0). Intuitively, if the two series are both I (1), then this partial difference between 

them might be stable around a fixed mean. The implication would be that the series 

are drifting together at roughly the same rate. Two series that satisfy this requirement 

are said to be cointegrated, and the vector [1,−β] (or any multiple of it) is a 

cointegrating vector. 

Source: Greene (2012). 

In light of the ICRC’s findings, Icon Water revisited this issue by first assessing the need for differencing 

and second by applying a statistical test for cointegration.  

The ‘nsdiffs’ function in the R ‘forecast’ package was used to estimate the number of differences 

required to make the releases and climate time series data stationary.42 The results were similar to that 

found by the ICRC: 

¶ no series requires seasonal differencing, either weekly or annually 

¶ the releases series (Releases) requires differencing once 

¶ maximum temperature (Temp) requires differencing once, but only over the period 1 July 1965 

to 31 January 2017.   

As the results suggest that Releases and Temp are non-stationary of order 1, the next step was to test 

for cointegration. The ‘urca’ package was used to apply the Phillips and Ouliaris unit root test to check 

for evidence of cointegration between the Releases and Temp data (Pfaff 2008).43 As shown in Table 

2-5, the null hypothesis of no cointegration can be rejected at the 99 per cent level. This result indicates 

no differencing should be applied to either the Releases or Temp data series. 

                                                      
40, Hyndman and Athanasopoulos, 2012: section 9.1 Dynamic regression models. 

41 If there is autocorrelation in the model, then it has been removed through an appropriate transformation. 

42 Hyndman and Khandakar, 2008: 1-22. 

43 For a fuller treatment of the test see Phillips and Ouliaris, 1990: 165-193. 
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Table 2-5: Cointegration results, Releases against Temp 

 Estimate Standard error t-value Significance 

z 5.7461009 0.0196896 291.834 *** 

Source: Icon Water analysis. 

2.4.2 Preliminary lag identification 

The ‘prewhiten’ function of the ‘TSA’ R package was used to undertake a preliminary identification of 

what lags of Temp, Rain and Evap should be considered in the ARIMA analysis.44 

Box 2-6: Prewhitening 

Prewhitening involves fitting an ARIMA model for the x series sufficient to reduce the 

residuals to white noise. The x series are then filtered with this model to get the white 

noise residual series. The y series is then filtered with the same model and the filtered 

y result is cross-correlated with the x filtered series. The cross-correlation function 

(CCF) produced is then used to identify possible lag terms to use in the regression. 

Source: ICRC (2015c). 

The potential lags shown by this analysis included: 

¶ Temp (0, 1, 2, 3, 5, 6, 10, 12), Temp squared (0 – 4, 6, 13) 

¶ Rain (0 - 8), Rain squared (0 – 7) 

¶ Evaporation (Evap) (0 – 5), Evap squared (0 – 5, 11). 

A sample of the CCF charts analysed for this exercise are shown in Figure 2-14.  

 

                                                      
44 Chan and Ripley, 2012: 50. 
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Figure 2-14: Prewhitening CCF charts 

 

Source: Icon Water analysis, R Studio output. 
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2.4.3 Preferred model specification 

Process 

Informed by the cointegration findings and prewhitening results, the final step in the model identification 

process involved running multiple model specifications in an iterative fashion. The preferred 

specification was identified on the basis of minimising the AIC, significance of the parameter estimates, 

stationarity of the model residuals and unit root performance (see section 2.6) and forecast accuracy 

(see section 2.7). The AIC is a statistical measure that values model fit and parsimony, where, all else 

being equal, the minimum value of the AIC is generally the best model for forecasting: 

ὃὍὅὔ ὰέὫ
ὛὛὉ

ὔ
ςὯ ς 

where: 

¶ N is the number of observations in the estimation 

¶ k is the number of predictors in the model 

¶ SSE is the minimum sum of squared errors. 

As discussed in section 2.3, the preferred model was identified and estimated using time series data 

from July 2006 onwards. 

Preferred model 

Icon Water’s preferred dam releases model is a seasonal (weekly) ARIMA (2,0,1)(2,0,1)[7] model with 

the following climate lags and other explanatory variables: 

¶ Temp (0, 1, 12), Temp squared (0, 1, 5, 12), Temp square root (1) 

¶ Rain (0, 1), Rain square root (0, 1, 3, 6, 7, 8) 

¶ Evap (0 – 4), Evap squared (0, 1, 5) 

¶ CumTemp – cumulative seven days Temp 

¶ CumRain – cumulative seven days Rain 

¶ CumX – cumulative seven days Rain x Evap 

¶ daily dummies (DumDM1 – DumDM6) – Sunday through Friday 

¶ December (DumDec) and summer (DumSum) dummies – summer is December through 

February  

¶ water installation numbers (Cust) 

¶ a Fourier seasonal term (S1-365 and C1-355) – to capture annual seasonality. 

Water installations was included rather than population as it both improved the AIC and had a higher 

parameter significance level.  

The Fourier series was included to capture any seasonality not captured by the weekly seasonality in 

the ARIMA process or explained by the climate variables. Following Hyndman (2010), the Fourier series 

approach allows the seasonal pattern to be modelled as follows: 

Ù Á ɻ ÓÉÎ
ςʌËÔ

Í
 ɼ ÓÉÎ

ςʌËÔ

Í
.  

where: 

¶ . summarises all the other variables in the model, including the ARIMA error term. 

A value of K of 1 was found to minimise the AIC. 
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2.5 Step 3 – Parameter estimation 

The parameters of the preferred model estimated over the period July 2006 to March 2017 are shown 

in Table 2-6. The model returns an AIC of 27,513 and all explanatory variables are significant at least 

at the 95 per cent level with the exception of dumSum, sar 2 and S1-365 which are not significant. 

Table 2-6: Icon Water ARIMA dam releases forecasting model parameters 

Variables Coefficient p-value Sig Variables Coefficient p-value Sig 

ar1 1.28  0.00  *** Rain8sqrt -0.38  0.00  *** 

ar2 -0.33  0.00  *** Evap0 1.16  0.00  *** 

ma1 -0.75  0.00  *** Evap1 1.04  0.00  *** 

sar1 0.91  0.00  *** Evap2 1.16  0.00  *** 

sar2 -0.03  0.15  not sig Evap3 0.88  0.00  *** 

sma1 -0.72  0.00  *** Evap4 0.45  0.00  *** 

intercept 25.30  0.37  not sig Evap0sq 0.10  0.00  *** 

Temp0 -0.64  0.00  *** Evap1sq 0.07  0.02  ** 

Temp1 -7.11  0.00  *** Evap5sq 0.05  0.00  *** 

Temp12 -0.47  0.00  *** CumX -0.02  0.00  *** 

Temp0sq 0.03  0.00  *** CumTemp -0.08  0.00  *** 

Temp1sq 0.11  0.00  *** CumRain 0.14  0.00  *** 

Temp5sq 0.01  0.00  *** dumDM1 6.28  0.00  *** 

Temp12sq 0.01  0.00  *** dumDM2 12.35  0.00  *** 

Temp1sqrt 32.38  0.00  *** dumDM3 6.77  0.00  *** 

Rain0 0.50  0.00  *** dumDM4 5.63  0.00  *** 

Rain1 0.52  0.00  *** dumDM5 4.72  0.00  *** 

Rain0sqrt -3.48  0.00  *** dumDM6 4.84  0.00  *** 

Rain1sqrt -3.96  0.00  *** dumDec 4.16  0.01  *** 

Rain3sqrt -0.48  0.00  *** dumSum -2.53  0.11  not sig 

Rain6sqrt 0.26  0.03  ** Cust 0.00  0.05  ** 

Rain7sqrt -0.50  0.00  *** S1-365 -1.87  0.32  not sig 

AIC  27,513    C1-365 -5.21 0.03 ** 

Source: Icon Water analysis, R Studio output. 

2.6 Step 4 – Diagnostic checking 

As noted earlier, the methods used to estimate ARIMA models rely on the model residuals or error term 

being serially uncorrelated (or white noise). After identifying and estimating the preferred model, the 

fourth step in the model selection approach is an examination of the residuals of the model to check 
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that they have no remaining autocorrelations. This involves visual inspection of the ACF, unit root and 

spectrum charts, and statistical tests on the residuals. 

2.6.1 Visual methods 

Figure 2-15 shows the ACF and PACF of the model residuals, which appear to be white noise as the 

majority of the spikes fall within the significance limits (shown by the dotted blue lines).   

Figure 2-15: ACF and PACF plots, residuals for proposed model 

Source: Icon Water analysis, RStudio output. 

The stationarity of an ARIMA process depends on the AR parameters. If the inverse roots of the AR 

polynomial all lie within the unit circle, as shown in Figure 2-16, then the estimated process is stationary.  

Figure 2-16: Inverse roots for proposed model 

Source: Icon Water analysis, RStudio output. 
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In addition, as shown in Figure 2-17, the spectral density of the ARIMA model residuals is reflective of 

a Gaussian white noise signal.45 This is further indication that there is no remaining residual 

autocorrelation. 

Figure 2-17: Spectrum plot for proposed model 

 

Source: Icon Water analysis, RStudio output. 

2.6.2 Statistical tests 

The Box-Ljung portmanteau test is commonly used to check that the residuals from a time series model 

resemble white noise.46 The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is also commonly used to 

test for stationarity.47 The Box-Ljung test returned a test statistic of 88.41 with a p-value of less than 

0.001, suggesting that the null hypothesis of white noise errors should be rejected at any reasonable 

significance level. The KPSS test also resulted in a rejection of the null hypothesis of stationarity with a 

p-value of 0.01. 

The ICRC observed a similar result in the development of its ARIMA model, offering this interpretation: 

In interpreting these results, it needs to be borne in mind that, with a sample size in excess 

of 3,000, the power of the test is going to be very high, that is, it will be capable of detecting 

even small deviations from pure, white noise residuals. This is seen in the autocorrelation 

function of the residuals …… Here the confidence interval is very small and autocorrelation 

estimates as low as 0.05 are showing as significant.48 

With a sample size now above 4,000, this interpretation remains valid. 

                                                      
45 Each element in a white noise time series is a random draw from a population with zero mean and constant 
variance (Greene, 2012: 749). 

46 See Ljung and Box, 1978: 297-303, for more detail on the Box-Ljung test. 

47 See Kwiatowski, Phillips, Schmidt and Shin, 1992: 159-178, for more detail on the KPSS test. 

48 ICRC, 2015b: 41. 
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2.7 Step 5 – Assessing forecast accuracy 

2.7.1 Dynamic forecast test 

Dynamic out-of-sample forecast performance, where in-sample model parameters are used to generate 

forecasts conditioned on the observed out-of-sample explanatory variables, is generally considered a 

good test of an econometric model.49 Hyndman (2014) states: 

It is important to evaluate forecast accuracy using genuine forecasts. That is, it is invalid to 

look at how well a model fits the historical data; the accuracy of forecasts can only be 

determined by considering how well a model performs on new data that were not used 

when estimating the model.50 

The dynamic forecast test requires withholding a portion of the sample data – the test data – from the 

estimation and using the rest of the data – the training data – for estimating the model. In this case, the 

24-month period from 1 April 2015 was withheld as the test data, with the model estimated using training 

data from July 2006 to 31 March 2015. 

Visual inspection 

The performance between the predicted dynamic values and observed releases is shown visually in 

Figure 2-18, which suggests a reasonably close relationship. At the aggregate level, the dynamic 

forecast predicts a dam releases forecast of 97.4 GL for the test period, about 2 per cent below the 

observed 99.5 GL. 

Figure 2-18: Dynamic forecast accuracy performance 

Source: Icon Water analysis. 

  

                                                      
49 Clements and Hendry, 2003: 1. 

50 Hyndman, 2014: 1. 
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Forecast accuracy measures 

As the model is a daily releases forecasting model, daily performance is examined, preferably in 

comparison with an alternative forecasting model. The ICRC ARIMA model as presented in April 2015 

in the ICRC's final technical paper on water demand forecasting has been selected for this purpose.  

There are a range of common measures of forecast accuracy, four of which are applied here: 

¶ mean error:    ὓὉ άὩὥὲὩ  

¶ root mean squared error:    ὙὓὛὉ άὩὥὲὩ  

¶ mean absolute percentage error:  ὓὃὖὉάὩὥὲρππὩ ώϳ  

¶ Theil's U1 statistic:51   Ὗρ В ώ ώ В ώ В ώ  

where: 

¶ Ὡ ώ ώ 

¶ ώ is the ith observation 

¶ ώ is a forecast of ώ. 

Table 2-7 shows the range of measures for the forecasts from the Icon Water and alternative models, 

both derived from the daily forecast performance over the test period. The results suggest that, on all 

measures presented, the Icon Water model performs better than or equal to the alternative in terms of 

forecast accuracy. 

Table 2-7: Measures of dynamic forecast accuracy, daily dam releases 

Measures Icon Water  ICRC 2015 model 

Mean error -2.87 -5.96 

Root mean squared error 13.65 15.81 

Mean absolute percentage error 6.64 7.91 

Theil’s U1 0.05 0.06 

Source: Icon Water analysis. 

2.7.2 Static forecast test 

The results of a static out-of-sample forecast performance for the test period for the Icon Water model, 

with the in-sample model parameters used to generate forecasts conditioned on the observed 

out-of-sample dependent and explanatory variables, is shown Figure 2-20. The static forecast 

performance, shown in Table 2-8, demonstrates relatively low levels of variance which indicates that 

the preferred ARIMA model specification remains stable over the out-of-sample period. This further 

suggests the new relationship between dam releases and weather variables that has been in place 

since the structural break in July 2006 appears to be holding. 

                                                      
51 The closer Theil's U1 measure is to zero, the greater the forecasting accuracy of the model. 
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Figure 2-19: Static forecast accuracy performance 

Source: Icon Water analysis. 

Table 2-8: Measures of static forecast accuracy, daily dam releases 

Source: Icon Water analysis 

2.8 Step 6 – Model performance against principles 

The performance of Icon Water’s preferred model against the set of principles set out earlier in this 

attachment is summarised in Table 2-9.  

Measures Icon Water  

Mean error -0.20 

Root mean squared error 8.22 

Mean absolute percentage error 4.24 

Theil’s U1 0.03 
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Table 2-9: Performance of Icon Water’s preferred model against principles  

Principle Performance Comments 

Simple, transparent and 
replicable 

V The forecasting approach comprises a 
standard ARIMA time series dam releases 
model. The daily dam release forecasts are 
subsequently converted into annual sales 
forecasts using simple arithmetic (see 
section 2.9.2). 

The model development and specification 
has been described at length in this 
attachment. A copy of the R script that 
contains the instructions for running the 
model and the model data is available on 
the Icon Water website. 

Sound statistical basis V The model utilises a best-practice time 
series econometric method and the 
preferred specification has been subjected 
to a robust and objective statistical model 
selection process. 

Dam releases basis V The model uses daily dam release data as 

the primary basis for forecasting water 

demand. 

Forecast period V In alignment with Icon Water’s proposal for 
an annual sales revenue adjustment (unders 
and overs account), the model has been 
configured to produce multi-year forecasts to 
the end of the 2018–23 regulatory period. 

A customer number explanatory variable 
has also been introduced in recognition of 
the long-term forecast period. 

Forecast accuracy V The model performed well when subjected 
to a formal out-of-sample forecast testing 
process. 

2.9 Step 7 – Model forecasts 

The seventh and final step in the modelling process is to use the ARIMA model to forecast dam releases 

and then convert the releases into ACT billed water sales by consumption tier.  

The model is designed to produce an estimate of annual water sales for 2016–17, a forecast for 2017–

18 (the final year of this regulatory period), and forecasts for each of the five years of the 2018–23 

regulatory period. The estimate for 2016–17 is a combination of observed and modelled data. The 

model can also be rolled forward on an annual basis. 
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Forecasts are produced following the same four-step process as that applied for the ICRC model: 

1. Daily dam releases are forecast under assumed forecast conditions using the preferred ARIMA 

model. 

2. The daily releases data are aggregated into monthly totals comparable in coverage to the 

monthly billed consumption date. 

3. The regression estimate of the ratio of historical billed consumption to releases is applied to the 

annual releases to calculate a forecast of annual billed sales. 

4. The annual billed sales forecast are split into Tier 1 and Tier 2 consumption based on the 

historical relationship between water consumption per installation and the observed proportion 

of total sales falling into the Tier 1 category. 

2.9.1 ARIMA dam release forecasts 

In order to produce dam releases forecasts using the preferred ARIMA model, assumptions are required 

about expected conditions (the levels of the explanatory variables) over the forecast period. The ARIMA 

dam release forecasts presented in this section are conditioned on the following assumptions about the 

explanatory variables. 

Climate variables 

Icon Water has adopted a similar approach to the ICRC to obtain and condition the forecast climate 

variables. The climate forecast is first obtained by averaging 45 separate climate scenarios derived 

from observed climate over a succession of 6.5 year intervals over the period since 1 July 1965 (the 

start of the Burrinjuck evaporation data series). Two adjustments are then made to the climate 

scenarios. 

First, a trend factor is applied to temperature. As shown in Table 2-10 there is evidence of small but 

highly significant trend in daily maximum temperature over the period 1965 to 2017. This rising trend is 

applied to the temperature data in the forecast climate scenarios. 

Table 2-10: Temperature against time regression results, 1965 to 2017 

 Coefficient Standard error t-value p-value Significance 

intercept 19.0514 0.1003 190.0082 0.0000 *** 

time 0.0001 0.0000 11.2046 0.0000 *** 

Source: Icon Water analysis. 

Second, historical rain and evaporation data are adjusted for the potential impact of climate change 

using future climate scenarios based on modelling by the South Eastern Australian Climate Initiative 

(SEACI). Icon Water uses these climate scenarios in its water supply and demand modelling. 

The climate scenarios applied for this forecast conditioning exercise are:  

¶ dry – the second driest of the 15 global climate models included in the SEACI project 

¶ driest – the driest of the SEACI models 

¶ medium climate change – the median global climate model included in the SEACI project 

¶ wet climate change – the second wettest of the SEACI models. 

These climate scenarios accord with recent climate observations, and in particular the observed cooler 

month rainfall reductions. Autumn rainfall has decreased significantly, with an almost 40 per cent 

reduction observed over the period 1997 to 2010.52 The percentage changes in rainfall and evaporation 

                                                      
52 ACTEW, 2014: ix. 
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by season for each scenario for one degree of global warming are shown in Table 2-11. These 

percentage changes are applied directly to the forecast climate scenarios. 

Table 2-11: Percentage changes in rainfall and evaporation for one degree of global warming 

Source: SKM (2013). 

Water installations 

The water installations forecasts proposed in this attachment are used for this variable.  

Dam releases forecasts 

Using the ARIMA model estimated up to 31 March 2017, an estimate for 2016–17 and forecasts from 

2017–18 onwards of dam releases by climate scenario are shown in Table 2-12. The aggregate dam 

releases forecasts are used in the revenue model to calculate the Water Abstraction Charge payable 

to the ACT Government. 

Table 2-12: Dam releases forecasts to 2023, by climate scenario (ML) 

Scenario 2016–17 2017–18 2018–19 2019–20 2020–21 2020–22 2022–23 

Driest 49,519 48,627 48,983 49,317 49,638 50,105 50,553 

Dry 49,494 48,499 48,856 49,191 49,511 49,979 50,427 

Medium 49,487 48,443 48,800 49,135 49,455 49,922 50,371 

Wet 49,484 48,380 48,736 49,070 49,390 49,858 50,307 

Average 49,496 48,487 48,844 49,178 49,498 49,966 50,415 

Source: Icon Water analysis. 

Observed and forecast dam releases from 2005–06 to 2022–23 are shown in Figure 2-20. The average 

over the regulatory forecast period is 49.6 GL per annum, about 2 per cent higher than the average 

observed over the three years from 2013–14 to 2015–16. 

 Driest Dry Medium Wet 

 Rain Evap Rain Evap Rain Evap Rain Evap 

Winter -18.41% 4.70% -8.24% 1.83% -8.17% 1.83% 1.99% 5.23% 

Spring -26.83% 0.78% -15.35% 2.30% -7.81% 2.30% -2.50% 3.48% 

Summer -6.07% 4.15% -4.60% 2.81% -1.53% 2.81% 8.50% 2.56% 

Autumn -6.56% 7.39% -3.93% 4.15% 5.90% 4.15% 5.78% 3.27% 
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Figure 2-20: Observed and forecast dam releases, 2006 to 2023 

Source: Icon Water. 

Icon Water’s REALM water supply and demand model was used to allocate the releases forecasts 

across supply sources by year for operating expenditure calculation purposes, as shown in Table 2-13. 

Given the current water security situation, as discussed in section 2.2.1, there is a low probability that 

expensive sources will be required in the 2018–23 regulatory period. The majority of water volumes are 

forecast to be sourced from Bendora and Googong dams, which are the lowest cost of Icon Water’s 

water sources. This will assist in keeping operating expenditure forecasts down in order to limit impacts 

on customer bills. 

Table 2-13: Average dam releases forecasts to 2023, by source (ML) 

Source 2016–17 2017–18 2018–19 2019–20 2020–21 2020–22 2022–23 

Bendora 42,970 39,108 38,138 38,345 38,164 38,089 38,241 

Cotter 389 542 962 1,653 2,072 2,263 2,387 

Googong 6,137 8,838 9,744 9,173 9,256 9,555 9,665 

Total 49,496 48,487 48,844 49,178 49,498 49,966 50,415 

2.9.2 ACT billed sales forecasts 

Forecast aggregate annual billed water sales volumes are shown in Table 2-14. The billed forecasts 

represent about 84.7 per cent of the dam release forecasts. The water sales volumes rise over the 

course of the 2018–23 regulatory period from 41.3 GL in 2018–19 to 42.7 GL by 2022–23. 
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Table 2-14: Billed water sales forecasts to 2023, by climate scenario (ML) 

Scenario 2016–17 2017–18 2018–19 2019–20 2020–21 2020–22 2022–23 

Driest 42,019 41,136 41,443 41,736 41,998 42,396 42,779 

Dry 42,006 41,028 41,335 41,630 41,891 42,289 42,673 

Medium 42,002 40,980 41,287 41,582 41,843 42,241 42,625 

Wet 41,999 40,926 41,233 41,527 41,788 42,187 42,571 

Average 42,007 41,018 41,325 41,618 41,880 42,278 42,662 

Source: Icon Water analysis. 

Observed and forecast billed ACT water sales from 2005–06 to 2022–23 are shown in Figure 2-21. The 

average over the regulatory forecast period is 42.0 GL per annum, about 2 per cent higher than the 

average observed over the three years from 2013–14 to 2015–16. 

Figure 2-21: Observed and forecast ACT billed water sales, 2006 to 2023 

Source: Icon Water. 

What is also evident from Figure 2-21 is the magnitude of the volume correction facing Icon Water in 

moving from the current water volume forecasts, with the average over the 2018–23 regulatory period 

some 3 per cent lower than the average Industry Panel forecast. The step down from the final year of 

the Industry Panel’s forecasts to the first year of the 2018–23 regulatory period is even more 

pronounced, with a fall of eight per cent from 44.8 GL to 41.3 GL. This correction means that the water 

price is already subject to substantial upward pressure before any consideration of costs. 

2.9.3 Tier 1 and Tier 2 proportions 

Icon Water is proposing to maintain its inclining block tariff over the 2018–23 regulatory period, with the 

Tier 1 volumetric price continuing to apply to consumption up to 0.548 kilolitres (kL) per day and the Tier 

2 price applying to consumption thereafter.53 Therefore, for revenue recovery purposes it is necessary 

to apportion aggregate ACT billed water sales forecasts into Tier 1 and Tier 2 sales for each year of the 

2018–23 regulatory period. 

                                                      
53 0.548 kL per day is roughly equivalent to 200 kL per annum. 
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Icon Water has adopted the approach to forecasting set out in the ICRC Water Demand Forecasting 

Final Technical Paper to estimate the proportion of total sales that is expected to fall into the Tier 1 

category.54 This involves estimating an equation that best fits the relationship between the average 

amount of water consumed per installation per annum and the observed proportion of total sales falling 

into the Tier 1 category. Table 2-15 shows this relationship since 2008–09, the year the inclining block 

tariff with the current step was introduced. 

Table 2-15: Observed sales by tier and customer numbers  

Year Total ACT 
sales (ML) 

Tier 1 
sales 
(ML) 

Tier 2 
sales 
(ML) 

Customers 
(#) 

ML/ 
customer/ 

year 

Observed 
Tier 1 

proportion 

2008–09  38,179   20,448   17,731   144,165   0.265   53.56  

2009–10  37,744   21,485   16,259   146,853   0.257   56.92  

2010–11  33,780   20,906   12,874   149,794   0.226   61.89  

2011–12  35,393   21,851   13,541   153,256   0.231   61.74  

2012–13  40,428   23,032   17,396   158,258   0.255   56.97  

2013–14  41,928   23,759   18,169   163,223   0.257   56.67  

2014–15  39,152   23,652   15,500   166,886   0.235   60.41  

2015–16  41,786   24,393   17,393   168,981   0.247   58.38  

Source: Icon Water analysis. 

The following equations were considered:  

¶ equation 1: ώ ὩȢ Ȣ  

¶ equation 2: ώ ρσρȢτφςσςὩ Ȣ  

¶ equation 3: ώ στρσȢτυχφσὼ ρτχτȢωτπψψὼ ωχȢςρρππ 

¶ equation 4: ώ  φτȢρτπςςπȢπππτσὩ Ȣ  

where: 

¶ y is the tier proportion of total ACT water sales measured as a proportion of 100 units 

¶ x is the average ACT installation consumption per annum in megalitres (ML). 

Following the ICRC approach, equation 4 was selected as the preferred equation on the basis of: 

¶ the best fit between the observed and modelled values 

¶ the significance of the equation parameters 

¶ providing sensible modelled values across the range of average consumption values 

contemplated over the forecast period, including values outside the observed range. 

Table 2-16 shows the performance of each of the equations against the observed values. Equation 4 

provides the best fit by some margin. 

                                                      
54 ICRC, 2015c: 23-26. 
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Table 2-16: Observed versus modelled Tier 1 proportion and residuals 

  Equations, modelled proportion Equations, residuals 

Year Observed 1 2 3 4 1 2 3 4 

2008–09  53.56  54.80 54.85 53.99 53.81  1.25   1.29   0.44   0.25  

2009–10  56.92  56.25 56.28 56.39 56.47  0.67   0.64   0.53   0.46  

2010–11  61.89  62.50 62.45 61.81 61.83  0.61   0.56   0.08   0.06  

2011–12  61.74  61.38 61.34 61.36 61.30  0.36   0.40   0.38   0.44  

2012–13  56.97  56.55 56.57 56.82 56.91  0.42   0.40   0.15   0.06  

2013–14  56.67  56.28 56.31 56.43 56.51  0.38   0.36   0.24   0.16  

2014–15  60.41  60.63 60.60 60.94 60.87  0.22   0.19   0.53   0.46  

2015–16  58.38  58.11 58.12 58.79 58.84  0.26   0.26   0.41   0.47  

      Total  4.17   4.09   2.76   2.35  

Source: Icon Water analysis. 

Two out of the three parameter estimates for option 4 are significant at the 95 per cent level, as shown 

in Table 2-17. 

Table 2-17: Equation 4 parameter significance  

 Coefficient Standard error t-value p-value Significance 

a -0.000431 0.001 -0.319 0.762  

b 38.083912 11.373 3.349 0.020 * 

c 64.140219 1.538 41.710 0.000 *** 

Source: Icon Water analysis. 

Figure 2-22 shows the modelled tier proportion over the observed and forecast period, in comparison 

to the observed values. 
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Figure 2-22: Observed versus modelled tier proportion 

Source: Icon Water analysis. 

Applying equation 4 to the average billed water sales forecast volumes presented in Table 2-14 

produces the forecast sales by tier shown in Table 2-18. Icon Water proposes these forecasts be used 

to set prices to apply in the 2018–23 regulatory period. 

Table 2-18: Forecast billed water sales by tier 

Year Total ACT 
sales (ML) 

Tier 1 sales 
(ML) 

Tier 2 sales 
(ML) 

Forecast Tier 1 
proportion 

2016–17  42,007   24,958   17,048  59.42 

2017–18  41,018   25,017   16,001  61.00 

2018–19  41,325   25,323   16,002  61.28 

2019–20  41,618   25,613   16,005  61.55 

2020–21  41,880   25,881   15,999  61.80 

2021–22  42,278   26,199   16,079  61.97 

2022–23  42,662   26,506   16,156  62.13 

Source: Icon Water analysis. 
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3 Other demand forecasts 

3.1 Sewage volumes 

Forecasts of sewage volumes are required for the purpose of forecasting sewage treatment costs. Icon 

Water’s forecasts have taken into consideration a range of possible scenarios of future per capita 

sewage contributions and rates of inflow and infiltration into the sewerage system in order to estimate 

the long-term trend. However, short-term factors, such as weather or seasonal impacts, mean that the 

outcome in any particular year may vary significantly from the central trend, and the sewerage system 

needs to be built to cope with above-average flows occurring over short periods of time. 

Figure 3-1 shows the historical volumes observed in the Lower Molonglo Water Quality Control Centre 

(LMWQCC), along with the mean forecast outcomes for the 2018–23 regulatory period. 

The impact of weather is evident in the relatively low volumes over the course of the Millennium Drought 

(which is considered to be due to the drying soil conditions and dropping of the water table, leading to 

lower inflow and infiltration), followed by a return to higher volumes in recent years as rainfall has 

increased. The increase in sewage volumes in wet weather is in contrast to water consumption, which 

tends to decrease in wet weather. 

Figure 3-1: LMWQCC annual forecast volumes  

Source: Icon Water. 

The centre of the forecast range has been used as a base for operating expenditure forecasts over the 

next regulatory period, shown in terms of total annual flow volume in the table below. The average 

expected flow is expected to increase from 35.3 GL per annum to 36.1 GL per annum by 2023, as 

shown in Table 3-1. 
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Table 3-1: Forecast treated sewage effluent discharge volumes 

Year Discharge volumes 
(GL) 

2016–17  34.9  

2017–18  35.1  

2018–19  35.3  

2019–20  35.5  

2020–21  35.7  

2021–22  35.9  

2022–23  36.1  

Source: Icon Water analysis. 

3.2 Water and sewerage installations and billable fixtures 

3.2.1 2013–18 regulatory period 

Forecasts of water and sewerage installations and sewerage billable fixtures are required for the 

purpose of setting prices as this is the basis on which annual water and sewerage supply charges and 

annual billable fixture charges are levied. In this context, installations refer to the number of supply 

charges paid. In reality, some installations on Icon Water’s billing system do not pay supply charges 

(for example standpipes) and others pay multiple supply charges (for example flats with a single meter 

and owner). 

The Industry Panel determined forecasts for installations and billable fixtures based on the annual 

observed growth rate over the 2008–13 regulatory period. The observed numbers are shown in 

comparison to the forecasts in Table 3-2.  



 

 

Icon Water  Page 43 

 

Table 3-2: Forecast and observed installations and billable fixtures, 2013–14 to 2017–18. 

Year  2013–14 2014–15 2015–16 2016–17 2017–18 

Water 
installations 

Forecast 162,951 166,992 171,134 175,378 179,728 

 Observed 163,223 166,886 168,981 171,959 175,566 

 Variance 0% 0% -1% -2% -2% 

Sewerage 
installations 

Forecast 162,609 166,678 170,849 175,124 179,506 

 Observed 162,881 166,503 168,598 171,551 175,138 

 Variance 0% 0% -1% -2% -2% 

Sewerage 
billable fixtures 

Forecast 60,274 61,597 62,949 64,331 65,743 

 Observed 59,620 61,764 62,400 62,860 63,399 

 Variance -1% 0% -1% -2% -4% 

Source: Industry Panel (2015); Icon Water. 

3.2.2 Forecast installations and billable fixtures 

Icon Water has developed installation and billable fixture forecasts for the 2018–23 regulatory period 

based on the Industry Panel approach, using the growth rate over the 2013–14 to 2017–18 period. The 

rate applied is 1.84 per cent for water installations, 1.83 per cent for sewerage installations and 

1.55 per cent for billable fixtures. The forecasts for the 2018–23 regulatory period are shown in Table 

3-3. 

Table 3-3: Forecast installations and billable fixtures 

Year Water installations  Sewerage installations Billable fixtures 

2016–17  171,959   171,551   62,860  

2017–18  175,566   175,138   63,399  

2018–19  178,795   178,344   64,380  

2019–20  182,083   181,609   65,377  

2020–21  185,432   184,933   66,389  

2021–22  188,842   188,318   67,417  

2022–23  192,315   191,765   68,461  

Source: Icon Water analysis. 
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Appendix 1 Icon Water’s proposed model 

A copy of Icon Water’s proposed water demand model is available on Icon Water’s website. It 
comprises: 

¶ an Excel file that contains the data required to run the model and a series of data sheets that 

present the model results 

¶ the R script required to run the model. 
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Abbreviations and acronyms 

ABS Australian Bureau of Statistics 

ACF autocorrelation function 

ACT Australian Capital Territory 

ARIMA autoregressive integrated moving average 

CCF cross correlation function 

CUSUM cumulative sum control chart  

GL gigalitre (one thousand megalitres) 

ICRC Independent Competition and Regulatory Commission 

kL kilolitre (one thousand litres) 

KPSS Kwiatkowski-Phillips-Schmidt-Shin 

LMWQCC Lower Molonglo Water Quality Control Centre 

MAPE mean absolute percentage error 

ML megalitre (one thousand kilolitres) 

PACF partial autocorrelation function 

PWCM permanent water conservation measures 

RMSE root mean square error  

SEACI South Eastern Australian Climate Initiative  

SSE sum of squared errors 

U1 Theil's U1 statistic 
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